دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا
دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا
دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا
دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا
دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا
دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا

دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی

امیرحسین رهنورد
۱۷:۳۶ ۱۴۰۳/۰۴/۲۹
دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا

گاهی اوقات سوال می‌شود که چطور ممکن است به چیزی جان بخشید! در این مقاله نگاهی کوتاه به دنیای هوش مصنوعی می‌اندازیم.

نگاهی گذرا به مغزهای ساخته شده

با توجه به پیشرفت تکنولوژی، ثانیه، دقیقه یا ساعاتی نیست که درباره این پدیده سخنی به گوشمان نرسد. هوش مصنوعی در بازی‌های ویدیویی یکی از جذاب‌ترین و پرکاربردترین زمینه‌های این فناوری است که تحولات شگرفی را تجربه کرده. شاید برخی دوستان به خاطر نداشته باشند، اما در گذشته داشتن شخصیت همراه در بازی کابوس بزرگی بود. آن‌ها عملاً اجسامی متحرک بودند که گاهی اوقات برای اعلام حضور خود چند گلوله به دیوار شلیک می‌کردند. در دهه‌های ۱۹۷۰ و ۱۹۸۰، بازی‌های ویدئویی نخستین قدم‌های خود را در استفاده از الگوریتم‌های ساده برداشتند. بازی‌هایی نظیر Pac-Man و Space Invaders از قواعد ابتدایی برای حرکت دشمنان و پاسخ به اقدامات بازیکن بهره می‌بردند. این الگوریتم‌ها عمدتاً از روش‌های ثابت و از پیش تعیین‌شده برای کنترل رفتار شخصیت‌های بازی استفاده می‌کردند.

در دهه ۱۹۹۰، پیشرفت‌های چشمگیری در حوزه هوش مصنوعی در بازی‌ها رخ داد. با ظهور بازی‌هایی نظیر Chessmaster 2000 و StarCraft، سیستم‌های هوش مصنوعی پیچیده‌تری به کار گرفته شدند که قادر بودند استراتژی‌های پیچیده‌تری را به کار برده و به صورت پویا به تصمیمات بازیکنان پاسخ دهند. این بازی‌ها نشان دادند که هوش مصنوعی می‌تواند تجربه بازی را به طرز چشمگیری بهبود بخشد و چالش‌های جدیدی برای بازیکنان ایجاد کند. با ورود به دهه ۲۰۰۰، تحولات بیشتری در زمینه هوش مصنوعی و بازی‌های ویدئویی صورت گرفت. توسعه‌دهندگان موتورهای بازی‌سازی با ایجاد قابلیت‌های جدید و امکانات بیشتر برای تیم‌های برنامه‌نویسی، به این روند کمک شایانی کردند. در این دوره، بازی‌هایی مانند Halo و Far Cry توانستند دشمنانی با هوش مصنوعی پیشرفته را ارائه دهند که قادر به انجام تاکتیک‌های پیچیده و تعامل بیشتر با محیط بودند.

در سال ۲۰۱۰ و با پیشرفت‌های جدید در حوزه یادگیری ماشین و شبکه‌های عصبی، هوش مصنوعی در بازی‌های ویدیویی به سطحی جدید رسید. بازی‌هایی نظیر AlphaGo از تکنیک‌های یادگیری عمیق (Deep Learning) برای شکست دادن بازیکنان حرفه‌ای استفاده کردند. این فناوری‌ها توانستند بازی‌هایی را خلق کنند که نه تنها قادر به یادگیری از تجربیات خود هستند، بلکه می‌توانند به صورت خودکار بهبود استراتژی‌های خود بپردازند. در سال‌های اخیر، هوش مصنوعی به یکی از مهم‌ترین اجزای بازی‌های ویدئویی تبدیل شده است. تکنیک‌هایی مانند هوش مصنوعی مولد (Generative AI) و یادگیری تقویتی (Reinforcement Learning) امکان ایجاد شخصیت‌های غیرقابل پیش‌بینی و داینامیک را فراهم کرده‌اند.

در ادامه برای درک بهتر باید دو مفهوم ابتدایی را یاد بگیریم.

دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا
پیاده سازی ذهن در یک ماشین بسیار جذاب است. آنچه درتصویر مشاهده می کنید یک الگوریتم باینری سرچ است که توسط زبان ++C نوشته شده

صفر و یک

اسکریپت‌ها و الگوریتم‌ها دو ابزار اساسی در توسعه هوش مصنوعی برای بازی‌های ویدیویی هستند که هر کدام نقش خاصی در ایجاد تجربه بازی دارند. اسکریپت‌ها در بازی‌های ویدیویی به مجموعه‌ای از دستورات گفته می‌شود که رفتارها و واکنش‌های شخصیت‌ها و رویدادهای بازی را تعریف می‌کنند. این دستورات به زبان‌های برنامه‌نویسی خاصی (معمولاً زبان پایتون یا ++C) نوشته می‌شوند که برای موتور بازی‌سازی مربوطه قابل فهم باشند. اسکریپت‌ها معمولاً برای تعیین وظایف خاص و تعاملات ساده مورد استفاده قرار می‌گیرند. به عنوان مثال، یک اسکریپت ساده می‌تواند حرکت یک شخصیت بازی را از نقطه A به نقطه B هدایت کند یا پاسخ یک دشمن به حضور بازیکن را مشخص کند. برای نمونه، اسکریپت ساده‌ای برای حرکت یک دشمن در یک بازی می‌تواند به این صورت باشد که اگر بازیکن در محدوده دید دشمن قرار گیرد، دشمن به سمت بازیکن حرکت کند و در غیر این صورت به مسیر گشت‌زنی خود ادامه دهد. این کار توسط یک سیگنال (ساخته شده توسط برنامه‌نویس یا موتور بازی‌سازی) انجام می‌شود.

الگوریتم‌ها به مجموعه‌ای از قوانین و دستورالعمل‌های منطقی گفته می‌شود که برای حل یک مسئله یا انجام یک وظیفه خاص به کار می‌روند. در بازی‌های ویدئویی، الگوریتم‌ها می‌توانند برای کنترل پیچیده‌تر رفتارهای شخصیت‌ها، پیدا کردن بهترین مسیر در نقشه‌ها و تصمیم‌گیری‌های استراتژیک مورد استفاده قرار گیرند. الگوریتم‌ها از ساختارهای ریاضی و منطقی پیچیده‌تری نسبت به اسکریپت‌ها برخوردارند و می‌توانند برای پردازش حجم زیادی از داده‌ها به کار روند.

دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا
در یک عنوان شوتر به مانند Battlefield، هوش مصنوعی به مراتب ساده‌تر از یک اثر مخفی کاری است

دو سبک متفاوت

دو ژانر محبوب بازی‌های اکشن و مخفی‌کاری هر کدام نیازمند نوع خاصی از هوش مصنوعی هستند که تفاوت‌های قابل توجهی با یکدیگر دارند. بازی‌های اکشن معمولاً بر روی سرعت، واکنش سریع و درگیری‌های مستقیم متمرکز هستند. در این نوع بازی‌ها، هوش مصنوعی باید توانایی پاسخ سریع به اقدامات بازیکن را داشته باشد و اغلب شامل الگوهای رفتاری ساده‌تر اما سریع‌تر است. دشمنان در بازی‌های اکشن معمولاً از الگوریتم‌های حمله و دفاع ساده استفاده می‌کنند که شامل موارد زیر است:

  • حمله و دفاع به صورت ساده: دشمنان در بازی‌های اکشن معمولاً از مجموعه‌ای از حرکات و حملات از پیش تعیین‌شده استفاده می‌کنند. این الگوها به صورت متناوب تکرار می‌شوند تا چالش ایجاد کنند.
  • واکنش سریع: هوش مصنوعی در اثار اکشن به دلیل عیان بودن بازیکن باید بسیار سریع عمل کنند. این اعمال شامل حملات فوری، سنگر گرفتن، یا جابجایی سریع برای جلوگیری از ضربه بازیکن است.
  • تاکتیک‌های تهاجمی: در این حالت این نوع هوش مصنوعی کمتر به پنهان شدن و بیشتر به درگیری مستقیم می‌پردازد.

بازی‌های مخفی‌کاری، بر خلاف بازی‌های اکشن، بیشتر بر روی پیشروی مخفیانه و اجتناب از درگیری مستقیم تمرکز دارند. هوش مصنوعی در این بازی‌ها پیچیده‌تر و دارای لایه‌های مختلفی از رفتارها است تا تجربه‌ای واقع‌گرایانه‌تر و چالش‌برانگیزتر ایجاد کند. ویژگی‌های اصلی هوش مصنوعی در بازی‌های مخفی‌کاری شامل موارد زیر است:

  • پیش‌بینی و پاسخ به رفتار بازیکن: دشمنان در بازی‌های مخفی‌کاری معمولاً توانایی پیش‌بینی و پاسخ به رفتار بازیکن را دارند. آن‌ها می‌توانند صداهای مشکوک را بررسی، آثار بازیکن را دنبال و به تغییرات محیطی واکنش نشان دهند.
  • مسیرهای گشت‌زنی پیچیده: دشمنان در بازی‌های مخفی‌کاری معمولاً دارای مسیرهای گشت‌زنی پیچیده و غیرقابل پیش‌بینی هستند. این مسیرها به گونه‌ای طراحی شده‌اند که بازیکن برای گذر از آن‌ها نیاز به برنامه‌ریزی دقیق و صبر داشته باشد.
  • استفاده از محیط: هوش مصنوعی در بازی‌های مخفی‌کاری اغلب از محیط برای پنهان شدن و جستجوی بازیکن استفاده می‌کند. دشمنان می‌توانند از درها، پنجره‌ها، و سایه‌ها برای پنهان شدن و غافلگیر کردن بازیکن بهره ببرند.
  • هماهنگی گروهی: دشمنان به دلیل طراحی مراحل متفاوت و چینش دشمنان، به محض رویت بازیکن باید با یکدیگر خیلی سریع ارتباط برقرار کنند.

بد نیست با دو هوش مصنوعی کارآمد آشنا شویم.

دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا
به امید بازگشت این مجموعه دوست داشتنی

GOAP

بازی F.E.A.R (First Encounter Assault Recon) توسط Monolith Productions در سال ۲۰۰۵ منتشر شد. الگوریتم GOAP (Goal-Oriented Action Planning) یکی از تکنیک‌های پیشرفته‌ای است که در این بازی به کار گرفته شده تا هوش مصنوعی دشمنان را زنده جلوه دهد. این الگوریتم به دشمنان اجازه می‌دهد تا با تعیین اهداف مشخص و برنامه‌ریزی برای رسیدن به آن‌ها، رفتارهایی منطقی و پویا از خود نشان دهند. GOAP با ارزیابی وضعیت فعلی دشمن و محیط اطراف، اهدافی را تعیین می‌کند که ممکن است شامل حمله به بازیکن، پناه گرفتن یا درخواست پشتیبانی باشد. این اهداف براساس اولویت‌های خاصی که به شرایط بستگی دارند، انتخاب می‌شوند. سپس دشمنان با استفاده از این الگوریتم، برنامه‌ریزی می‌کنند که چگونه به بهترین نحو به این اهداف برسند. این برنامه‌ریزی شامل انتخاب مجموعه‌ای از اقدامات پیوسته است که دشمن را به هدف نزدیک‌تر می‌کند. فرضاً، اگر هدف دشمن یافتن پوشش باشد، مجموعه‌ای از اقدامات مانند دویدن به سمت مکان امن و استفاده از موانع برای پنهان شدن را شامل می‌شود. یکی از نقاط قوت GOAP، توانایی آن در واکنش به تغییرات دینامیک محیط است. اگر شرایط تغییر کند، بازیکن موقعیت خود را تغییر دهد یا دشمن جدیدی وارد صحنه شود، الگوریتم مجدداً برنامه‌ریزی می‌کند تا اقدامات بهینه برای رسیدن به هدف جدید انتخاب شوند. این انعطاف‌پذیری باعث می‌شود که دشمنان رفتارهایی غیرقابل پیش‌بینی و طبیعی از خود نشان دهند.

در بازی “.F.E.A.R”، هوش مصنوعی از الگوریتم‌های جستجو برای بهبود تعاملات و تصمیم‌گیری‌های دشمنان استفاده می‌کند. یکی از الگوریتم‌های اصلی به کار گرفته شده در این بازی، الگوریتم جستجوی A* (A-star) است که برای پیدا کردن کوتاه‌ترین مسیر بین دو نقطه مورد استفاده قرار می‌گیرد.

تاثیر GOAP بر صنعت بازی‌های ویدئویی بسیار گسترده بود. این الگوریتم به عنوان یک نوآوری در هوش مصنوعی بازی‌ها، به ایجاد دشمنانی هوشمندتر کمک کرده است. بازی “F.E.A.R” با استفاده از این الگوریتم توانست تجربه‌ای واقع‌گرایانه و پویا برای بازیکنان فراهم کند که تا آن زمان در صنعت بازی‌های ویدئویی بی‌سابقه بود. دشمنان در این بازی قادر هستند به طور مستقل تصمیم‌گیری کنند و با توجه به شرایط موجود، بهترین استراتژی‌ها را برای مقابله با بازیکن انتخاب کنند. تفاوت اصلی هوش مصنوعی بازی “F.E.A.R” با دیگر رقبای خود، در توانایی دشمنان برای تطبیق با رفتار بازیکن و محیط است. این هوش مصنوعی نه تنها توانست رفتارهایی متنوع و واقع‌گرایانه از خود نشان دهد، بلکه به دلیل استفاده از GOAP، قابلیت یادگیری و تطبیق با استراتژی‌های بازیکن را نیز داشت. این ویژگی باعث شد که هر بار بازی کردن، تجربه‌ای متفاوت و منحصربه‌فرد برای بازیکنان ایجاد شود و چالش‌های جدیدی پیش روی آن‌ها قرار گیرد.

به طور کلی، استفاده از الگوریتم GOAP در بازی “F.E.A.R” معیاری جدید برای هوش مصنوعی در بازی‌های ویدئویی تعیین کرد.

دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا
نیاز به یک دیدار دوباره

ایجاد تعادل در هوش مصنوعی

در بازی‌های Splinter Cell، طراحی و پیاده‌سازی هوش مصنوعی برای کاراکترهای غیرقابل بازی (NPCها) همچون دیگر اثار مخفی کاری نقش بسیار مهمی دارد. یکی از سیستم‌های کلیدی که در این بازی‌ها به کار گرفته شده، سیستم آگاهی محیطی تاکتیکی (TEAS) است. این سیستم به NPCها کمک می‌کند تا به شکل هوشمندانه‌تری با محیط اطراف خود تعامل داشته باشند و بدانند کدام مناطق به کدام مناطق دیگر متصل هستند. سیستم TEAS محیط بازی را به مناطق کوچک‌تری تقسیم می‌کند که هر کدام به وسیله نقاط خاصی مانند درها و پنجره‌ها به هم متصل می‌شوند. این نقاط اتصال (Choke Nodes) نشان‌دهنده راه‌های باریکی هستند که دو زیرمجموعه‌ (Sub Navmeshes) را به هم وصل می‌کنند.

Navmesh (Navigation Mesh) یک ابزار کلیدی در طراحی بازی‌ها و برنامه‌های شبیه‌سازی است که برای مدیریت حرکت و جابه‌جایی کاراکترها و اشیاء در یک محیط مجازی استفاده می‌شود. این نمودار به شکل مجموعه‌ای از چندضلعی‌ها یا مثلث‌ها طراحی می‌شود که مناطق قابل دسترسی و قابل حرکت را در محیط نشان می‌دهند. Navmesh به دشمنان کمک می‌کند تا مسیریابی کنند و بدانند کدام قسمت‌ها از محیط قابل دسترسی و کدام قسمت‌ها غیر قابل دسترسی هستند.

برای هر نقطه اتصال، یک نقطه موقعیت‌یابی (Position Node) در دو طرف قرار داده می‌شود که نشان می‌دهد این دو زیرمجموعه به هم متصل هستند. طراح مراحل (Level Designer) نیز ویژگی‌هایی مانند اندازه منطقه، تعداد دشمنانی که می‌توانند وارد آن شوند و نوع منطقه (مانند بالکن باز یا اتاق بسته) را برای هر منطقه مشخص می‌کند. این اطلاعات به NPCها کمک می‌کند تا بفهمند چگونه باید در هر منطقه عمل کنند. اگر یک NPC نتواند بازیکن را مستقیماً ببیند، سیستم TEAS به او می فهماند تا نقاط اتصال (مثل درها یا پنجره‌ها) را بپوشاند و به طور هوشمندانه‌ای رفتار کند.

سیستم TEAS همچنین به دشمنان امکان می‌دهد تا بدانند بازیکن در کدام منطقه پنهان شده و به طور هوشمندانه‌ای تنها راه‌های ورود به آن منطقه را پوشش دهند، به جای اینکه بدون فکر به سمت بازیکن حمله کنند! این سیستم در نسخه‌های بعدی بازی، مانند Blacklist، با اضافه شدن ویژگی‌هایی مانند تولید خودکار نقاط اتصال و بررسی‌های خطا در ویرایشگر بهبود یافته است. همچنین، یکی دیگر از مشکلاتی که تیم توسعه‌دهنده با آن روبه‌رو بود، یعنی عدم تعادل در تشخیص صدای NPC. در بسیاری از موارد، بازیکنان احساس می‌کردند که به‌طور ناعادلانه‌ای توسط دشمنان که نمی‌توانستند ببینند، شناسایی می‌شدند. برای حل این مشکل، توسعه‌دهندگان تصمیم گرفتند که قدرت شنوایی دشمنانی که خارج از دید بازیکن هستند و در فاصله دوری قرار دارند را برای برخی از رویدادهای خاص کاهش دهند. این تغییر باعث شد که بازی به شکل قابل توجهی جذاب‌تر شود و بازخوردهای مثبتی از سوی بازیکنان دریافت کند. علاوه بر این، برای ارائه بازخورد بهتر به بازیکنان، سیستم بروز رسانی شد تا NPC با جملات خاصی (بیرون از صحنه و یا درون صحنه) واکنش نشان دهند که به بازیکن نشان می‌دهد چرا و چگونه شناسایی شده. این جملات در سه سطح مختلف قرار داشتند تا بازیکن به تدریج یاد بگیرد که صدای پای او قابل شنیدن است و بتواند از این بازخوردها برای بهبود استراتژی خود استفاده کند! در نهایت، توسعه‌دهندگان به مشکلی به نام “مشکل ناپدید شدن NPCها” نیز پرداخته‌اند. در این مشکل، بازیکن ممکن است به‌طور پنهانی NPC را یکی‌یکی حذف کند و در نهایت، تعداد کمی از NPCها باقی بمانند که از ناپدید شدن همکارانشان بی‌اطلاع باشند. برای حل این مشکل، توسعه‌دهندگان روشی را طراحی کردند که دشمنان باید به حضور دیگر دوستان خود آگاه باشند و اگر دیگر آن‌ها را نبینند یا نشنوند، مشکوک و تحقیق کنند.

دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا
بهبود دید مخروطی (Conical vision)

در بازی‌هایی که بازیکن می‌تواند مخفی شود یا خط دید را بشکند، مدل درک بصری اهمیت زیادی دارد. به طور معمول از دید مخروطی برای مدل‌سازی میدان دید دشمنان استفاده می‌شود. اگرچه Conical vision می‌تواند میدان دید مستقیم را به خوبی شبیه‌سازی کند، اما در مدل‌سازی برخی جنبه‌های دیگر مانند دید محیطی و دید در فواصل دور عملکرد ضعیفی دارد. برای مثال، Conical vision نمی‌تواند به خوبی دید محیطی را که در اطراف دید مرکزی قرار دارد شبیه‌سازی و در فواصل دور نیز با گسترش زیاد، دقت خود را از دست می‌دهد. تیم توسعه‌دهنده در “Splinter Cell” برای حل این مشکلات به تفاوت بین درک و آگاهی پرداختند. آگاهی به مجموعه‌ای از حالت‌های ذهنی اطلاق می‌شود که به تدریج از طریق ادراک حسی به دست می‌آید. وقتی NPC چیزی را برای اولین بار می‌بیند، فقط شروع به آگاه شدن از آن می‌کند. این فرآیند به عواملی مانند نورپردازی، انتظارات NPC و مدت زمان مشاهده بستگی دارد. در بسیاری از بازی‌ها، این فرآیند به صورت یک نوار پیشرفت مدل‌سازی شده است که در نهایت دو حالت باینری را برای NPC نشان می‌دهد: “چیز مشکوکی نمی‌بینم” یا ” آن دشمن آنجاست!” در Blacklist، تیم توسعه‌دهنده برای تشخیص بازیکن از هشت نقطه مختلف بر روی بدن بازیکن استفاده کردند. بسته به وضعیت بازیکن، تعداد معینی از این نقاط باید قابل مشاهده باشد تا فرآیند تشخیص آغاز شود. وقتی تعداد کافی از این نقاط قابل مشاهده شود، فرآیند تشخیص شروع شده و یک تایمر فعال می‌شود. این تایمر به بازیکن فرصت می‌دهد تا خط دید را بشکند یا NPC را از بین ببرد تا از تشخیص جلوگیری کند. هنگامی که این تایمر به پایان برسد، بازیکن شناسایی می‌شود. مشکل مدل مخروط دید این است که با افزایش فاصله از NPC، مخروط گسترده‌تر می‌شود که نشان می‌دهد NPCها باید به طور طبیعی چیزهای دورتر را ببینند. اما در فواصل دور، این مدل کارایی لازم را ندارد. برای حل این مشکل، مخروط دید با جعبه‌های تابوت‌مانند جایگزین شد که ابتدا مانند مخروط گسترش می‌یابند و سپس با افزایش فاصله شروع به جمع شدن می‌کنند. این مدل بهتر توانست دید NPCها در فواصل دور را شبیه‌سازی کند.

امیدوارم با این اطلاعات به درک درستی از هوش مصنوعی رسیده باشید. از اینکه بنده را تا انتهای این نوشته همراهی کرده‌اید سپاسگزارم.

ولگرد اوسکلnobodyAmscBehzad zargaryDARKSIRENARSHIAAAAKurosمحمد حسین کریمیJoel MorganNostalgic PlayerCambyses The ThirdnimaMasoudJavad.Starهالک ایرانیArmanهایزنبرگSilent Killerمتینامیر فتحیmore

ایرانیکارت

مطالب مرتبط سایت

تبلیغات

دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا
دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا
دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا
دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا
دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا
دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا
دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا
دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا

نظرات

دیدگاهتان را بنویسید

  • _Alex_ گفت:

    ممنون بابت مقاله آقای رهنورد ! 🌷🙏🏻
    هوش مصنوعی تا به الان با این همه پیشرفت هنوز در ابتدای راه هستش و با پیشرفت تکنولوژی در عرصه های نرم افزار و سخت افزار حداقل تا سال ۲۰۳۰ ، شاهد ادغام بسیار قوی تر و گسترده تر و هوشمندانه تر هوش مصنوعی در حوزه گیمینگ هستیم و میتونم به جرأت بگم نسل ۱۰ بازی ها بسیار متفاوت تر ، حرفه ای تر ، دقیق تر و پر جزئیات تر خواهد بود ، از صحبت با NPC های هوشمند گرفته تا خلاقیت و هوشمندانه تصمیم گرفتن و بروز احساسات آن ها در مواجه با محیط های مختلف ، در یک‌کلام بینظیره… ! 🔥

    ولگرد اوسکلمارتین فورد(شیفته عظمت غلام)nobodyjokerامیرحسین رهنورد𝙄 𝘼𝙈 𝘿𝙐𝙏𝘾𝙃 🔵tothegametime پیج رسمی اینستاگرامARSHIAAAA𝗣𝗢𝗣𝗘𝗬𝗘💚𝙑𝙀𝙂𝘼𝙉nimamore
    • صحبت با NPC های هوشمند اوه اوه عجب خط دیالوگ های پیچیده ای
      دیگه محدودیت در دیالوگ نیست

      باید دید چقدر این هوش مصنوعی می تونه در لذت بخش شدن بازی موفق ظاهر بشه
      حفظ تعادل تو بازی خیلی مهمه

      ولگرد اوسکلمارتین فورد(شیفته عظمت غلام)Behzad zargaryامیرحسین رهنورد𝙄 𝘼𝙈 𝘿𝙐𝙏𝘾𝙃 🔵𝗣𝗢𝗣𝗘𝗬𝗘💚𝙑𝙀𝙂𝘼𝙉ARSHIAAAA_Alex_nimaهالک ایرانی
      • _Alex_ گفت:

        این یعنی یه جهش در دنیای گیمینگ ، فک کن با میکروفون با یه NPC هوشمند حرف بزنی اونم به صورت آزاد و راحت ، ازش بخوای داخل یه مأموریت بهت کمک کنه یا بره برات کاری رو انجام بده ، مراقب دوستات و تیمت باشه ، شاید هم به تو یا به خودش انگیزه بده برای کشتن یا آزاد کردن افراد ، یا از NPC یا کارکتر های دیگه اعتراف بگیره ، با احساسات برخورد کنه و حتی به تو خیانت کنه و طرف بقیه رو بگیره ، واقعاً Real Time میشه اونم خیلی زیاد ، اون موقع هست نمیدونی گیم آنلاین بزنی یا آفلاین ، با این حساب برای یه گیمی مثل GTA 7 یا سری کالاف دیوتی های اون موقع و حتی سولز لایک ها که حداقل سال ۲۰۳۰ به بعد میان ببین کیفیت و تکسچر های بازی و جزئیات بی نظیر و خارق‌العاده بازی چقدر بیشتر شده ، فوق العاده هوشمند شدن و به شدت تو رو درگیر بازی میکنه ، نهایت تا سال ۲۰۴۰ ما شاهد یک بازی مثل فیلم Ready Player One هستیم و این یعنی گیمینگ حقیقی ! 🔥😵

        ولگرد اوسکلمارتین فورد(شیفته عظمت غلام)امیرحسین رهنورد𝙄 𝘼𝙈 𝘿𝙐𝙏𝘾𝙃 🔵𝗣𝗢𝗣𝗘𝗬𝗘💚𝙑𝙀𝙂𝘼𝙉tothegametime پیج رسمی اینستاگرام
    • 🟢 شماها را نمیدونم به چشم دیدین یا نه !!!
      اما در یکسری از بازی‌ها، ضعف هوش مصنوعی باعث میشد تا بشه به راحتی غول‌ها یا یکسری از مراحل سخت را به آسانی پشت سر بذاریم، یا به اصطلاح باعث میشد راحت تر مراحل را دور بزنیم و رد بشیم، که خودش به شدت بازی را خنده‌دار میکرد😂😂

      ولگرد اوسکلمارتین فورد(شیفته عظمت غلام)Behzad zargaryامیرحسین رهنورد𝙄 𝘼𝙈 𝘿𝙐𝙏𝘾𝙃 🔵tothegametime پیج رسمی اینستاگرامKINGSLEY_Alex_RezaItsMobin
      • _Alex_ گفت:

        برای شروع طبیعی هست که یکسری ایرادات بزرگ و کوچیک داشته باشه ، تا سال ۲۰۳۰ ما شاهد یک جهش هستیم ، تا اون ChatGPT 6 منتشر شده یعنی هر سوال رو با هر زبانی که بپرسی به بهترین شکل پاسخ میده اونم با درک احساسات ، این جهش فقط راجب NPC ها نیست ، شامل شوتر های اول شخص ، سوم شخص ، سبک های مخفی کاری که نگم برات ، حالت های مختلف بازی ها ، تکسچر و کیفیت و میزان فریم اونا ، بهینگی بسیار بالاتر ، باگ های خیلی پایین تر و بدون خطا بودن ، تأخیر نزدیک به صفر ، حالت های مختلف نورپردازی و سایه ها و انعکاس ها مثل ویژگی RTX و به مراتب جدید تر و قدرتمند تر و کلی قابلیت های جدید دیگه که در دست توسعه هستش ، تحسین بر انگیزه ! 😵

        ولگرد اوسکلمارتین فورد(شیفته عظمت غلام)امیرحسین رهنورد𝙄 𝘼𝙈 𝘿𝙐𝙏𝘾𝙃 🔵𝗣𝗢𝗣𝗘𝗬𝗘💚𝙑𝙀𝙂𝘼𝙉tothegametime پیج رسمی اینستاگرام
    • abbas1990 گفت:

      هیچوقت نمیشه اینو گفت چون همه میگفتن بازی ها نسل ۹ خیلی خفن تر میشن و سخت افزار بهتر فلان می‌کنه و بهمان می‌کنه و کلی امید واهی دیگه ولی در عمل هر نسل از نسل قبل بدتر شده یه مورد دیگه اینکه یه سری مطالب خوندم راجب هوش مصنوعی که می‌گفتن چیزی به نام هوش مصنوعی وجود نداره چون چیزی اگه هوش داشته باشه دیگه مصنوعی نیست و برعکسش اگه مصنوعی باشه پس یعنی هوش نداره این چیزی هم که میبینیم همه گیر شده یه موتور جستجوی خیلی سریع که از خودش توانایی خلق نداره و میاد چیزایی که قبلاً خلق شده رو سرچ میزنه و یه محتوا تحویل ما میده که بعضی مواقع خیلی دقیق و بعضی مواقع خیلی خنگ و بدون منطق…همین الآنم که هوش مصنوعی همه گیر نشده سازنده ها خیلی تنبل شدن و ریسکشون خیلی کم شده و بازی ها اغلب شبیه به هم هستن دیگه اون موقعی که هوش مصنوعی بیاد شک نکن بدترم میشه چون سازنده نمیاد فقط واسه دیالوگ ها از هوش مصنوعی استفاده کنه مطمئن باش طمع می‌کنه و خیلی از پروسه ساخت رو با هوش مصنوعی انجام میده و همون‌طور که گفتم هوش مصنوعی میاد از مدل های قبل اسکی میره و نتیجه رو خودتون حدس بزنین

      ولگرد اوسکل_Alex_
      • _Alex_ گفت:

        اره موافقم تا حدودی ، اون ویدئو رو دیدم که راجب همین موضوع صحبت می‌کرد ، البته آدم کار کن داریم تا کار کن و چیزی که مشخصه این هستش که هر نسل با توجه به تکنولوژی و نرم افزار ها و سخت افزار ها و قابلیت های دیگه ، پیشرفت های زیادی رو به وجود میاره و منم انتظار این رو ندارم که از پراید سوار BMW بشیم ، اما قطعاً نسبت به الان خیلی اوضاع فرق کرده ، بیشتر اشتیاق این رو دارم ببینم اون موقع چی میخوان رونمایی و منتشر کنن و تجربه اونا چطور حسی میتونه داشته باشه !

  • بعضی گیما برای اینکه هوش مصنوعی توشون ساده نباشه به طور اشتباه سختش میکنن
    مثلا وقتایی که توی گیمای مخفی کاری به آنمی نزدیک میشی کیل خفن بگیری یهو بر میگرده سمتت و لو میری

    ولگرد اوسکلمارتین فورد(شیفته عظمت غلام)امیرحسین رهنورد𝙄 𝘼𝙈 𝘿𝙐𝙏𝘾𝙃 🔵tothegametime پیج رسمی اینستاگرامKINGSLEYARSHIAAAAice_Alex_nima
  • Arman گفت:

    فکر میکنم توصیف این وضعیت روز به روز با پیشرفت علم پیچیده تر میشه و پیچیده تر،من هرچه قدر مطالعه داشته باشم فکر نکنم هیچوقت بتونم درک کنم که چجوری مشتی الگوریتم می‌تونند یک شخصیت خیالی رو زنده کنند؟چجوری کاری میکنند که آدم به اون شخصیت (که وجود خارجی نداره)اینقدر وابسته بشه،اینقدر دوستش داشته باشه،اینقدر عاشقش باشه !مثل جادو میمونه برام …شگفت انگیز و حیرت آور

    ولگرد اوسکلمارتین فورد(شیفته عظمت غلام)امیرحسین رهنوردزمان ب_Alex_Final seyedهالک ایرانی
  • Javad.Star گفت:

    درود به نویسنده
    پاینده باشید
    لذت بردم
    هوش مصنوعی واقعا در مخفی کاری جواب هست
    مخفی کاری در واقعیت مجازی جواب، بدجور

    یک بازی در این سبک که مثال زدنی باشه vampire:the masquerade justice

    امیرحسین رهنورد
  • من یادمه هوش مصنوعی بازی هیتمن که یه بازی مخفی کاری بود خیلی ضعیف بود و همه چی جور میشد تا شما شخص مورد نظر ترور کنید

    امیرحسین رهنورد
  • Kuros گفت:

    یادش بخیر C++ ❤️…چقدر قدرتمنده این زبان ؛ یادمه ی مقطعی میگفتم این زبان چی داره که هسته اکثر نرم افزارها رو باهاش مینویسن بعدا متوجه شدم شاهکاره…
    الگوریتمی که مثال آوردین بهتره یک تابع برای گفتن آرایه و عدد مورد جستجو از کاربر داشته باشه…

    _Alex_امیرحسین رهنوردزمان ب
  • مقاله فوق العاده بود 👌 خسته نباشید جناب آقای رهنورد
    هوش مصنوعی با پتانسیل فوق العاده ای که داره تا چند سال آینده میتونه انقلابی در زمینه طراحی NPC ها به وجود بیاره! به نظرم از الان باید هدف نسل دهم رو به جای ارتقای گرافیک به ارتقای هوش مصنوعی اختصاص بدند! دیگه نهایت کیفیت بصری رو دیدیم الان زمانش رسیده اوج AI و عملکرد فنی رو در بازی ها شاهد باشیم…

    _Alex_مارتین فورد(شیفته عظمت غلام)امیرحسین رهنورد𝙄 𝘼𝙈 𝘿𝙐𝙏𝘾𝙃 🔵
  • nobody گفت:

    مقاله جالبی بود و من را یاد آرکام سیتی انداخت.
    ممنون از نویسنده محترم.

    امیرحسین رهنورد
دمیدن روح انسان در ماشین؛ نگاهی به جهان هوش مصنوعی در بازی های ویدیویی - گیمفا